Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280647

RESUMO

Pesticides have become indispensable compounds to sustain global food production. However, a series of sustainable agricultural practices must be ensured to minimize health and environmental risks, such as eco-friendly cultivation techniques, the transition to biopesticides, appropriate hygiene measures, etc. Hygiene measures should include the management of rinse wastewater (RWW) produced when cleaning agricultural equipment and machinery contaminated with pesticides (among other pollutants), such as sprayers or containers. Although some technical guidelines encourage the reuse of RWW in agricultural fields, in many cases the application of specialized treatments is a more environmentally friendly option. Solar photocatalysis was found to be the most widely studied physical-chemical method, especially in regions with intense solar radiation, generally using catalysts such as TiO2, Na2S2O8, and H2O2, operating for relatively short treatment periods (usually from 10 min to 9 h) and requiring accumulated radiation levels typically ranging from 3000 to 10000 kJ m-2. Biological treatments seem to be particularly suitable for this application. Among them, biobed is a well-established and robust technology for the treatment of pesticide-concentrated water in some countries, with operating periods that typically range from 1 to 24 months, and with temperatures preferably close to 20 °C; but further research is required for its implementation in other regions and/or conditions. Solar photocatalysis and biobeds are the only two systems that have been tested in full-scale treatments. Alternatively, fungal bioremediation using white rot fungi has shown excellent efficiencies in the degradation of pesticides from agricultural wastewater. However, greater efforts should be invested in gathering more information to consolidate these technologies and expand their use in the agricultural sector.


Assuntos
Praguicidas , Águas Residuárias , Peróxido de Hidrogênio , Agricultura , Praguicidas/análise , Biodegradação Ambiental
2.
Sci Total Environ ; 912: 169198, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097072

RESUMO

In this work, agricultural rinse wastewater, which is produced during the cleaning of agricultural equipment and constitutes a major source of pesticides, was treated by fungal bioremediation and ozonation, both individually and combined in a two-stage treatment train. Three major pesticides (thiacloprid, chlortoluron, and pyrimethanil) were detected in rinse wastewater, with a total concentration of 38.47 mg C L-1. Comparing both technologies, ozonation in a stirred reactor achieved complete removal of these pesticides (720 min) while proving to be a more effective approach for reducing colour, organic matter, and bacteria. However, this technique produced transformation products and increased toxicity. In contrast, fungal bioremediation in a rotating drum bioreactor attenuated toxicity levels and did not produce such metabolites, but only removed approximately 50 % of target pesticide - hydraulic retention time (HRT) of 5 days - and obtained worse results for most of the general quality parameters studied. This work also includes a preliminary economic assessment of both technologies, revealing that fungal bioremediation was 2 times more cost-effective than ozonation. The treatment train, consisting of a first stage of fungal bioremediation followed by ozonation, was found to be a promising approach as it synergistically combines the advantages of both treatments, achieving high removals of pesticides (up to 100 %) and transformation products, while reducing operating costs and producing a biodegradable effluent. This is the first time that fungal bioremediation and ozonation technologies have been compared and combined in a treatment train to deal with pesticides in agricultural rinse wastewater.


Assuntos
Ozônio , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Purificação da Água/métodos , Poluentes Químicos da Água/análise
3.
Chemosphere ; 338: 139467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437617

RESUMO

Subsurface co-contamination by multiple pollutants can be challenging for the design of bioremediation strategies since it may require promoting different and often antagonistic degradation pathways. Here, we investigated the simultaneous degradation of toluene and chloroform (CF) in a continuous-flow anaerobic bioelectrochemical reactor. As a result, 47 µmol L-1 d-1 of toluene and 60 µmol L-1 d-1 of CF were concurrently removed, when the anode was polarized at +0.4 V vs. Standard Hydrogen Electrode (SHE). Analysis of the microbial community structure and key functional genes allowed to identify the involved degradation pathways. Interestingly, when acetate was supplied along with toluene, to simulate the impact of a readily biodegradable substrate on process performance, toluene degradation was adversely affected, likely due to competitive inhibition effects. Overall, this study proved the efficacy of the developed bioelectrochemical system in simultaneously treating multiple groundwater contaminants, paving the way for the application in real-world scenarios.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Biodegradação Ambiental , Tolueno/química , Clorofórmio , Anaerobiose , Água Subterrânea/química , Poluentes Químicos da Água/química
4.
J Environ Manage ; 325(Pt A): 116595, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419290

RESUMO

Agricultural washing wastewater (AWW) is an important source of pesticides that, given its intrinsic characteristics, has a high potential to be treated by fungal bioremediation using white rot fungi. In the present study, two AWW treatment strategies were compared: a fluidized-bed reactor (FBR) with T. versicolor pellets and a rotating drum bioreactor (RDB) with T. versicolor immobilized on wood. The RDB effluent showed better results in all studied parameters compared to those of the FBR, including pesticide removal (87%), toxicity, laccase activity, COD, absorbance and microbial communities. Additionally, the fungal assemblage showed that T. versicolor was successfully immobilized in the RDB, which triggered a major shift in the initial community. Afterwards, solid by-products were treated in a fungal biopile-like system reaching high biodegradation rates. Therefore, this study validates the fungal RDB as a viable alternative for AWW treatment, opening up the possibility of a further in-situ and full-scale application.


Assuntos
Praguicidas , Águas Residuárias , Agricultura , Reatores Biológicos , Biodegradação Ambiental
5.
Environ Sci Ecotechnol ; 12: 100199, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36157346

RESUMO

Using bioelectrochemical systems (BESs) to provide electrochemically generated hydrogen is a promising technology to provide electron donors for reductive dechlorination by organohalide-respiring bacteria. In this study, we inoculated two syntrophic dechlorinating cultures containing Dehalobacter and Dehalobacterium to sequentially transform chloroform (CF) to acetate in a BES using a graphite fiber brush as the electrode. In this co-culture, Dehalobacter transformed CF to stoichiometric amounts of dichloromethane (DCM) via organohalide respiration, whereas the Dehalobacterium-containing culture converted DCM to acetate via fermentation. BES were initially inoculated with Dehalobacter, and sequential cathodic potentials of -0.6, -0.7, and -0.8 V were poised after consuming three CF doses (500 µM) per each potential during a time-span of 83 days. At the end of this period, the accumulated DCM was degraded in the following seven days after the inoculation of Dehalobacterium. At this point, four consecutive amendments of CF at increasing concentrations of 200, 400, 600, and 800 µM were sequentially transformed by the combined degradation activity of Dehalobacter and Dehalobacterium. The Dehalobacter 16S rRNA gene copies increased four orders of magnitude during the whole period. The coulombic efficiencies associated with the degradation of CF reached values > 60% at a cathodic potential of -0.8 V when the degradation rate of CF achieved the highest values. This study shows the advantages of combining syntrophic bacteria to fully detoxify chlorinated compounds in BESs and further expands the use of this technology for treating water bodies impacted with pollutants.

6.
J Hazard Mater ; 439: 129614, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35882168

RESUMO

Fungal bioremediation emerges as an effective technology for pesticide treatment, but its successful implementation depends on overcoming the problem of microbial contamination. In this regard, fungal immobilization on wood seems to be a promising strategy, but there are two main drawbacks: the predominant removal of pesticides by sorption and fungal detachment. In this study, agricultural wastewater with pesticides was treated by Trametes versicolor immobilized on wood chips in a rotary drum bioreactor (RDB) for 225 days, achieving fungal consolidation and high pesticide biodegradation through two main improvements: the use of a more favorable substrate and the modification of operating conditions. Fungal community dynamic was assessed by denaturing gradient gel electrophoresis (DGGE) analysis and subsequent prominent band sequencing, showing a quite stable community in the RDB, mainly attributed to the presence of T. versicolor. Pesticide removals were up to 54 % diuron and 48 % bentazon throughout the treatment. Afterwards, pesticide-contaminated wood chips were treated by T. versicolor in a solid biopile-like system. Hence, these results demonstrate that the microbial contamination constraint has definitely been overcome, and fungal bioremediation technology is ready to be implemented on a larger scale.


Assuntos
Praguicidas , Águas Residuárias , Biodegradação Ambiental , Biomassa , Praguicidas/metabolismo , Trametes/metabolismo , Águas Residuárias/microbiologia
7.
Bioresour Technol ; 343: 126080, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34628008

RESUMO

This case study is part of a circular bioeconomy project for a winery company aiming to integrate a microalgae-based system within the existing facilities of the winery WWTP, promoting nutrient recovery and transformation into valuable products and bioenergy. Microalgae were used for wastewater treatment, removing N-NH4+ (97%) and P-PO4-3 (93%). A pilot anaerobic reactor was used for batch anaerobic mono-digestion of secondary sludge (WAS) and for co-digestion of WAS and algal biomass. The methane yield using WAS from two different wine production seasons was 155.4 and 132.9 NL CH4 kg VS-1. Co-digestion led to the highest methane yield (225.8 NL CH4 kg VS-1). The application of the bio-wastes for fertilization was assessed through plant growth bioassays: mono- and co-digestion digestates and dry algal biomass enhanced plant biomass accumulation (growth indexes of 163%, 155% and 121% relative to those of the control - commercial amendment, respectively), demonstrating a lack of phytotoxicity.


Assuntos
Microalgas , Purificação da Água , Anaerobiose , Biocombustíveis , Reatores Biológicos , Digestão , Metano , Esgotos , Águas Residuárias , Recursos Hídricos
8.
Sci Total Environ ; 804: 150040, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798717

RESUMO

This work assesses the capacity of a microalgae-based system to remove three highly to medium polar pesticides typically found in freshwater: acetamiprid, bentazone, and propanil. Degradation of the pesticides was firstly studied individually at batch lab-scale reactors and abiotic and heated-killed controls were employed to clarify their removal pathways. At lab-scale, propanil and acetamiprid were completely removed after 7 days whereas bentazone was not removed. Four and two transformation products (TPs) were generated in the biodegradation process for acetamiprid and propanil, respectively. Then, the simultaneous removal of the pesticides was assessed in an outdoor pilot photobioreactor, operated with a hydraulic residence time of 8 days. During the steady-state, high removal efficiencies were observed for propanil (99%) and acetamiprid (71%). The results from batch experiments suggest that removal is mainly caused by algal-mediated biodegradation. Acetamiprid TPs raised throughout the operational time in the photobioreactor, while no propanil TP was detected at the pilot-scale. This suggests complete mineralization of propanil or residual formation of its TPs at concentrations below the analytical method detection limit. Aiming at biomass valorization, diverse microalgae harvesting methods were investigated for biomass concentration, and the effect of residual pesticides on the biogas yield was determined by biochemical methane potential tests. Anaerobic digestion was not inhibited by the pesticides as verified by the digestion performance. The results highlight the potential of microalgae-based systems to couple nutrient removal, biomass production, micropollutant biodegradation, and biofuel production.


Assuntos
Microalgas , Praguicidas , Biomassa , Fotobiorreatores , Águas Residuárias , Água
9.
J Hazard Mater ; 416: 126234, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492987

RESUMO

Bioelectrochemical systems (BES) are promising technologies to enhance the growth of organohalide-respiring bacteria and to treat chlorinated aliphatic hydrocarbons. In this study, two carbon-based cathodic electrode materials, a graphite brush and a carbon cloth, were used as hydrogen suppliers to couple growth of Dehalogenimonas and dechlorination of 1,2-DCP to nontoxic propene in the cathode vessel. The BES with graphite brush electrode consumed ~4000 µM 1,2-DCP during 110 days and exhibited a degradation rate 5.6-fold higher than the maximum value obtained with the carbon cloth electrode, with a cathode potential set at -0.7 V. Quantitative PCR confirmed that Dehalogenimonas gene copies increased by two orders of magnitude in the graphite brush BES, with an average yield of 1.2·108±5·107 cells per µmol of 1,2-DCP degraded. The use of a pulsed voltage operation (cathode potential set at -0.6 V for 16 h and -1.1 V for 8 h) increased the coulombic efficiency and degradation of 1,2-DCP when compared with a continuous voltage operation of -1.1 V. Bacterial cell aggregates were observed in the surface of the graphite brush electrodes by electron scanning microscopy, suggesting biofilm formation. This study expands the range of chlorinated compounds degradable and organohalide-respiring bacteria capable of growing in BES.


Assuntos
Hidrocarbonetos Clorados , Alcenos , Eletrodos , Propano/análogos & derivados
10.
Sci Total Environ ; 794: 148386, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218143

RESUMO

Although immobilization on lignocellulosic materials has recently become a promising strategy in the fungal-based technology for micropollutant bioremediation, research evidence in this area is still scarce and significant knowledge gaps need to be addressed. In this study, Trametes versicolor immobilized on Quercus ilex wood chips was initially proposed to remove two pesticides, diuron and bentazon, from real agricultural wastewater. Thus, a bioremediation treatment was performed in a fixed-bed bioreactor at two empty bed contact times (EBCT) of 1 and 3 days. Bentazon saturation was achieved after 5 EBCTs, while diuron sorption remained below 50% even after 40 days of treatment. The differences in diuron and bentazon removals were linked to their different hydrophobicity and thus, affinity for wood. However, in any case, the sorption contribution of wood was found to be predominant compared to fungal biodegradation. These results motivated a comprehensive study to evaluate the pollutant sorption capacity of wood. Afterwards, pesticide-contaminated wood was successfully bioregenerated by T. versicolor in a biopile-like system, reaching high fungal colonization (up to 0.2451 mg ergosterol·g-1 dry weight), degradation rate (up to 2.55 mg·g-1·d-1) and degradation yields (up to 92.50%). The combined treatment consisting of the fixed-bed bioreactor followed by the re-inoculated biopile showed the best performance in terms of fungal content and pesticide degradation. This is an important step toward the implementation of fungal-based technology for the removal of pesticides from agricultural water.


Assuntos
Praguicidas , Trametes , Biodegradação Ambiental , Polyporaceae , Águas Residuárias
11.
Waste Manag ; 124: 254-263, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639410

RESUMO

Integration of microalgae-based systems with conventional wastewater treatment plants provides an effective alternative to waste stream management. In this work, alkaline and enzymatic pretreatments of a microalgal culture mainly constituted by Chlorella sp. and Scenedesmus sp. and cultivated in wastewater from an industrial winery wastewater treatment plant were assessed. Microalgal enzymatic pretreatments were expected to overcome algal recalcitrancy before anaerobic digestion. pH-induced flocculation at pH 10 and 11 did not enhance microalgal harvesting and solubilisation, achieving a performance similar to that of natural sedimentation. Enzymatic hydrolysis of algal biomass was carried out using three commercial enzymatic cocktails (A, B and C) at two enzymatic doses (1% and 2% (v/v)) over 3 h of exposure time at 37 °C. Since pretreatments at a 1% dose for 0.5 h and 2% dose for 2 h achieved higher solubilisation, they were selected to evaluate the influence of the pretreatment on microalgal anaerobic digestibility. Biochemical methane potential tests showed that the pretreatments increased the methane production of the raw algal biomass 3.6- to 5.3-fold. The methane yield was 9-27% higher at the lower enzyme dose. Hence, microalgae pretreated with enzymes B and C at a 1% dose were co-digested with waste activated sludge (WAS). Even when the enzyme increased the methane yield of the inoculum and the WAS, the methane yield of the raw microalgae and WAS mixture was not significantly different from that obtained when algae were enzymatically pretreated. Nonetheless, co-digestion may achieve the goals of a waste recycled bio-circular economy.


Assuntos
Chlorella , Microalgas , Anaerobiose , Biocombustíveis , Biomassa , Digestão , Metano , Esgotos , Águas Residuárias
12.
Sci Total Environ ; 754: 142114, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911153

RESUMO

Intensive and extensive use of pesticides has contributed to their wide distribution in soil, air, and water. Due to their detrimental effects on non-target organisms, different technologies have been considered for their removal. In this work, three hydrophobic pesticide active compounds, namely, chlorpyrifos, cypermethrin, and oxadiazon, were selected to study the potential for their removal from aqueous media by a microalgae consortium. An abiotic and a killed control (thermally inactivated dead microalgae biomass) were employed to clarify their removal pathways, and pesticide content was quantified in liquid and biomass phases for 7 days. At the final time, total degradation (biodegradation plus photodegradation) contributed to the removal of 55% of oxadiazon, 35% of chlorpyrifos, and 14% of cypermethrin. Furthermore, more than 60% of chlorpyrifos and cypermethrin were removed by sorption onto microalgae biomass. Overall, the three pesticides showed high removal from the liquid phase. O,O-diethyl thiophosphate was identified in the liquid phase as a transformation product of chlorpyrifos formed by microalgae degradation. Phycoremediation was coupled with anaerobic degradation of the microalgae biomass containing the retained pesticides by sorption through biochemical methane potential tests. Anaerobic digestion was not inhibited by the pesticides as verified by methane production yields. The removal efficiency of the pesticides in the digestate was as follows: chlorpyrifos > cypermethrin > oxadiazon. These results highlight the potential of low-cost algal-based systems for the treatment of wastewater or effluents from agrochemical industries. The integration of wastewater treatment with biogas production through anaerobic digestion is a biorefinery approach that facilitates the economic feasibility of the process.


Assuntos
Microalgas , Praguicidas , Anaerobiose , Biodegradação Ambiental , Biocombustíveis , Biomassa , Metano , Águas Residuárias
13.
Sci Total Environ ; 743: 140628, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652358

RESUMO

The occurrence of the extensively used herbicide diuron in the environment poses a severe threat to the ecosystem and human health. Four different ligninolytic fungi were studied as biodegradation candidates for the removal of diuron. Among them, T. versicolor was the most effective species, degrading rapidly not only diuron (83%) but also the major metabolite 3,4-dichloroaniline (100%), after 7-day incubation. During diuron degradation, five transformation products (TPs) were found to be formed and the structures for three of them are tentatively proposed. According to the identified TPs, a hydroxylated intermediate 3-(3,4-dichlorophenyl)-1-hydroxymethyl-1-methylurea (DCPHMU) was further metabolized into the N-dealkylated compounds 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU) and 3,4-dichlorophenylurea (DCPU). The discovery of DCPHMU suggests a relevant role of hydroxylation for subsequent N-demethylation, helping to better understand the main reaction mechanisms of diuron detoxification. Experiments also evidenced that degradation reactions may occur intracellularly and be catalyzed by the cytochrome P450 system. A response surface method, established by central composite design, assisted in evaluating the effect of operational variables in a trickle-bed bioreactor immobilized with T. versicolor on diuron removal. The best performance was obtained at low recycling ratios and influent flow rates. Furthermore, results indicate that the contact time between the contaminant and immobilized fungi plays a crucial role in diuron removal. This study represents a pioneering step forward amid techniques for bioremediation of pesticides-contaminated waters using fungal reactors at a real scale.


Assuntos
Diurona/análise , Herbicidas/análise , Biodegradação Ambiental , Ecossistema , Fungos , Humanos
14.
Sci Total Environ ; 728: 138414, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344227

RESUMO

The presence of pesticides in agricultural wastewater entails harmful risks to both the environment and public health. In this study, two channel-type bioreactors with Trametes versicolor immobilized on pinewood chips were evaluated in terms of the removal efficiency of diuron from agricultural wastewater under non-sterile conditions. First, both single and successive sorption processes of diuron on pinewood chips were evaluated. The Freundlich model showed the best correlation in the sorption isotherm study (R2 = 0.993; Δq = 5.245), but according to repeated sorption experiments, the Langmuir model (R2 = 0.993; Δq = 5.757) was considered more representative. Equilibrium was reached after approximately 48 h, and the Elovich kinetic model gave the best fit with the experimental data. A packed-bed channel bioreactor (PBCB) was found to be a remarkable alternative able to remove up to 94% diuron from agricultural wastewater during 35 d. However, periodic manual mixing was required to guarantee an aerobic process, and a rotating drum bioreactor (RDB) was subsequently proposed as an enhanced version. The RDB removed up to 61% diuron during 16 d using almost 7 times lower wood dose (152 g wood·L-1) than in the PBCB (1000 g wood·L-1).


Assuntos
Pinus , Águas Residuárias , Reatores Biológicos , Diurona , Trametes
15.
Chemosphere ; 250: 126293, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234621

RESUMO

Pesticides introduced inadvertently or deliberately into environment by global agricultural practices have caused growing public concern, therefore the search of approaches for elimination of such xenobiotics should be motivated. The degradation of hydrophobic pesticides including chlorpyrifos, dicofol and cypermethrin were assayed with the white-rot fungus Trametes versicolor. Experiments were set at realistic concentration as 5 µg L-1, and both culture medium and biologic matrix were analyzed for pollutants residues. Results showed that the first step was due to a fast adsorption, which also played an important role, accounting for more than 90% removal in average. Then mass balances proposal evidenced the biodegradation of the adsorbed pollutants, demonstrating efficient depletion as 94.7%, 87.9% and 93.1%, respectively. Additionally, the related degradation metabolites were identified using ultra performance liquid chromatography coupled to high resolution mass spectrometry. Two compounds, namely O,O-diethyl thiophosphate and diethyl phosphate were detected as transformation products of chlorpyrifos, whereas dicofol was degraded into benzaldehyde that is first time to be reported. It also confirms the degradation capability of T. versicolor. Our results suggest that T. versicolor is a potential microorganism for bioremediation of hydrophobic pesticide contaminated environments.


Assuntos
Biodegradação Ambiental , Praguicidas/metabolismo , Trametes/metabolismo , Adsorção , Agaricales/metabolismo , Agricultura , Clorpirifos/metabolismo , Espectrometria de Massas
16.
J Environ Manage ; 258: 110012, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929054

RESUMO

Manganese-Aluminum powders were recently reported to show high efficiency and fast reaction rates as decolorization materials for azo-dye aqueous solutions. This work presents a detailed study of different aspects of this material. Firstly, the influence of the crystalline phase and the microstructure was studied by comparing the efficiency of powders obtained by different production protocols. Secondly, the decolorization efficiency was investigated on various types of dyes, including real textile wastewater samples. The analysis of the treated water and the particles showed that the main reaction mechanism was the breaking of the azo-dye molecules, although important adsorption on the metallic surface was observed for some colorants. Finally, the reusability of the particles and the reduction of toxicity achieved during the treatments were assessed. The simple production and application methods, the high efficiency and the use of environmentally friendly metallic elements are the main advantages of Manganese-Aluminum powders compared to other high-efficient decolorizing metallic materials.


Assuntos
Poluentes Químicos da Água , Compostos Azo , Corantes , Pós , Águas Residuárias
17.
Water Res ; 159: 490-500, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128473

RESUMO

A novel approach for harvesting Scenedesmus sp. microalgae from real wastewater by using adsorbents of magnetite-based nanoparticles (Fe3O4 NPs) was tested in this study for the first time for this microalgae. Using these NPs, the harvesting efficiency was even higher than 95%. The optimal conditions (0.14 gNPs/L, a short magnetic separation time of only 8 min and 27 min of contact time) were found using the response surface methodology. The best fitting of the adsorption equilibrium results was achieved by the Langmuir isotherm model, and the maximum adsorption capacity for Scenedesmus sp. reached 3.49 g dry cell weight (DCW)/g Fe3O4 NPs. Zeta potential measurements and the Dubinin-Radushkevich isotherm model analysis pointed out that the main adsorption mechanism between Scenedesmus sp. cells and Fe3O4 NPs was electrostatic interaction. Finally, Fe3O4 NPs were six times successfully reused by combining an alkaline treatment with an ultrasonication process, which implies microalgae lysis. The results herein obtained highlight the potential for magnetic separation of microalgae from wastewater, which is capable of reaching a high harvesting efficiency in a very short time.


Assuntos
Microalgas , Biomassa , Compostos Férricos , Magnetismo , Águas Residuárias
18.
J Chromatogr A ; 1568: 57-68, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29910089

RESUMO

The evaluation of wastewater treatment capabilities in terms of removal of water pollutants is crucial when assessing water mitigation issues. Not only the monitoring of target pollutants becomes a critical point, but also the transformation products (TPs) generated. Since these TPs are very often unknown compounds, their study in both wastewater and natural environment is currently recognized as a tedious task and challenging research field. In this study, a novel automated suspect screening methodology was developed for a comprehensive assessment of the TPs generated from nine antibiotics during microalgae water treatment. Three macrolides (azithromycin, erythromycin, clarithromycin), three fluoroquinolones (ofloxacin, ciprofloxacin, norfloxacin) and three additional antibiotics (trimethoprim, pipemidic acid, sulfapyridine) were selected as target pollutants. The analysis of samples was carried out by direct injection in an on-line turbulent flow liquid chromatography-high resolution mass spectrometry (TFC-LC-LTQ-Orbitrap-MS/MS) system, followed by automatic data processing for compound identification. The screening methodology allowed the identification of 40 tentative TPs from a list of software predicted intermediates created automatically. Once known and unknown TPs were identified, degradation pathways were suggested considering the different mechanisms involved on their formation (biotic and abiotic). Results reveal microalgae ability for macrolide biotransformation, but not for other antibiotics such as for fluoroquinolones. Finally, the intermediates detected were included into an in-house library and applied to the identification of tentative TPs in real toilet wastewater treated in a microalgae based photobioreactor (PBR). The overall approach allowed a comprehensive overview of the performance of microalgae water treatment in a fast and reliable manner: it represents a useful tool for the rapid screening of wide range of compounds, reducing time invested in data analysis and providing reliable structural identification.


Assuntos
Antibacterianos/análise , Antibacterianos/metabolismo , Cromatografia Líquida , Microalgas/metabolismo , Espectrometria de Massas em Tandem , Águas Residuárias/microbiologia , Purificação da Água/métodos , Biotransformação , Ciprofloxacina/análise , Eritromicina/análise , Fluoroquinolonas/análise , Macrolídeos/análise , Ofloxacino/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
19.
Water Res ; 137: 86-96, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544206

RESUMO

The use of microalgal consortia for urban wastewater treatment is an increasing trend, as it allows simultaneous nutrient removal and biomass production. Emerging contaminants proposed for the list of priority substances such as the hormone 17ß-estradiol are commonly found in urban wastewater, and their removal using algal monocultures has been accomplished. Due to the inherent potential of algae-based systems, this study aimed to assess the capability of native photobioreactor biomass to remove 17ß-estradiol under indoor and outdoor conditions. At the same time, the microbial community changes in regular and bioaugmented operations with Scenedesmus were assessed. The results show that almost complete removal (>93.75%) of the hormone 17ß-estradiol can be attained in the system under favourable seasonal conditions, although these conditions greatly influence biomass concentrations and microbial diversity. Even under the harsh conditions of low temperatures and solar irradiation, the established consortium removed more than 50% of the pollutant in 24 h. While species from genus Chlorella were stable during the entire operation, the microbial diversity analysis revealed that assorted and evenly distributed populations stimulate the removal rates. Bioaugmentation assays proved that the input of additional biomass results in higher overall removal and decreases the yield per mg of biomass.


Assuntos
Estradiol/isolamento & purificação , Microalgas/metabolismo , Fotobiorreatores/microbiologia , Scenedesmus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biomassa , Chlorella/metabolismo , Estradiol/metabolismo , Consórcios Microbianos/fisiologia , Projetos Piloto , Temperatura , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
20.
Chemosphere ; 180: 33-41, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28391150

RESUMO

This study investigated the removal of antibiotic ciprofloxacin during the treatment of real wastewater using high rate algal ponds (HRAP). When spiked at 2 mg/L into primary domestic wastewater, ciprofloxacin (CPX) was efficiently removed from laboratory scale photobioreactors continuously operated under various durations of artificial illumination and hydraulic residence times. Subsequent batch tests conducted with reactor microcosms showed CPX removal was mainly caused by photodegradation during daytime, and sorption to biomass during night time. These findings were confirmed during an experiment conducted in a 1000 L pilot HRAP operated outdoors, as well as during outdoor batch assays conducted using pilot HRAP microcosms. While these results highlight a potentially interesting treatment capacity in comparison to conventional biological treatment, further research must confirm these findings at relevant pollutant concentration (ng-µg/L) and determine the fate and potential toxicity of degradation products.


Assuntos
Ciprofloxacina/análise , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Biomassa , Ciprofloxacina/metabolismo , Fotólise , Lagoas/química , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA